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Abstract
We consider a sequential blocked matching (SBM) model where strategic agents repeatedly

report ordinal preferences over a set of services to a central mechanism. The central mechanism’s
goal is to elicit agents’ true preferences and design a policy that matches services to agents in
order to maximize the expected social welfare with the added constraint that each matched
service can be blocked or unavailable for a number of time periods. Naturally, SBM models the
repeated allocation of reusable services to a set of agents where each allocated service becomes
unavailable for a fixed duration.

We first consider the offline SBM setting, where the the strategic agents are aware of the true
preferences. We measure the performance of any policy by distortion, the worst-case multiplicative
approximation guaranteed by any policy. For the setting with S services, we establish lower
bounds of Ω(S) and Ω(

√
S) on the distortions of any deterministic and randomised mechanisms,

respectively. We complement these results by providing approximately truthful, measured by
incentive ratio, deterministic and randomised policies based on the repeated application of random
serial dictatorship that match the lower bounds. Our results show that there is a significant
improvement if one considers the class of randomised policies.

Finally, we consider the online SBM setting with bandit feedback where each agent is unaware
of her true preference, and the center must facilitate each agent in the learning of agent’s
preference through the matching of services over time. We design an approximately truthful
mechanism based on the Explore-then-Commit paradigm, which achieves logarithmic dynamic
approximate regret.

1 Introduction

In recent years, machine learning algorithms have been extremely successful in various domains,
from playing games to screening cancer. However, despite such success, most learning algorithms
cannot be deployed directly in practice to make decisions under uncertainty. The main reason is that
most real-world applications involve multiple agents, and learning algorithms are often constrained
due to the unavailability of resources. In this paper, we consider the problem of repeated matching
with blocking constraints, a scenario where multiple agents simultaneously learn their preferences
with repeated blocking or unavailability of resources.

In particular, we are interested in the repeated one-sided matching problem where strategic
agents report only their ordinal preferences based on their expected rewards over a set of alternatives.
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The agents are matched to the alternatives given their reported preferences each time period or
round. It is well-known that one-sided matching can be used to model various real-world situations
such as matching patients to kidneys across health institutions [18, 43], assigning students to rooms
in residential halls [18], allocating workers to tasks in crowdsourcing [17, 2], and recommending users
to activities in recommender systems [45, 4, 24].

In many of these situations, there are two main obstacles. First, for a setting with reusable
alternatives or services, a major caveat is that an agent-alternative match within a round can result
in blocking of some services in which the services may not be available until a later time. For example,
a recommended activity (e.g., a special promotion offer from a restaurant) that is matched to (or
used by) a user may not be available to all users again until a later time. Or, in cloud computing,
where tasks are matched to resources (e.g. GPUs), once a task is assigned to a resource, that resource
is blocked for a certain number of rounds.

Second, the agents are often unaware of their exact preferences so that the central mechanism must
coordinate their explorations without incurring a significant loss. This is often true for recommending
restaurants to customers, as the restaurants have limited capacity and people are rarely informed of
all possible choices. Furthermore, even if the agents are aware of their preferences, they might be
strategic in reporting their preferences in order to be matched to better services. This is particularly
prominent in assigning rooms to students. Rooms can be blocked due to occupancy and can be
made available again once the students leave the rooms. As a result, there is a potential for the
students to misreport their private preferences to manipulate the matching outcomes.

1.1 Main Contributions

To capture the notion of one-sided matching with blocking, we introduce a sequential blocked matching
(SBM) model where a set of N strategic agents is matched to a set of S services repeatedly over
rounds, and the match (i.e., the service) is blocked or unavailable for a deterministic number of
rounds. Each agent strategically reports only the ordinal preference at each round, based on her
expected rewards over the services and on the matches in previous rounds, to maximize her expected
utility (i.e., the sum of the rewards of the matches) over all the rounds. The planner’s goal is to
design a central mechanism to derive a matching policy that, at each round, elicits true preferences
from the agents and matches agents to services to maximize the expected social welfare, which is
the sum of the expected utilities of the agents from the matching over rounds, while accounting for
potential blocking from the matching. To the best of our knowledge, SBM models have not been
studied before and can be applied to a wide range of real-world matching scenarios.

Table 1: Lower and Upper Bound Results for Offline SBM Models
Distortion Incentive Ratio

Any Deterministic Mechanism (lower bound) Ω(S) (0, 1]
Derandomized Repeated Random Serial Dictatorship (upper bound) O(S) (1− 1/e)

Any Randomised Mechanisms (lower bound) Ω(
√
S) (0, 1]

Repeated Random Serial Dictatorship (upper bound) O(
√
S) (1− 1/e)

We investigate the offline and online variations of the SBM model where agents can have preference
and reward uncertainty over the set of services. Given the variations, we are interested in deriving
deterministic and randomized mechanisms that are approximately (expected) truthful and efficient.

2



We measure truthfulness by incentive ratio [16], which measures how much a single agent can gain
via misreporting preferences. We measure efficiency through the notion of distortion from social
choice theory [41], which measures the loss in social welfare due to access to only preferences, and
not utility functions and rewards. We formally define these concepts in Section 3.

Offline SBM Benchmarks. For the offline setting of SBM models, the agents know their
preferences and rewards over the services, but the planner does not know about agents’ true
preferences. Essentially, the offline benchmarks establish what we can achieve in terms of distortion
if the agents’ don’t have to learn. Table 1 summarizes our results. More specifically, we derive lower
bounds on the distortion of any deterministic and randomised mechanism. The main ingredient of
our proof is the careful construction of reward profiles that are consistent with reported preferences
that guarantees poor social welfare for the planner. We then focus on the upper bound and provide
approximately truthful mechanisms with bounded incentive ratios that match the distortion lower
bounds. In short, both the deterministic and randomised mechanisms we provide are based on
the repeated application of random serial dictatorship (RSD) mechanisms for one-shot one-sided
matching problems. Our randomised mechanism, repeated RSD (RRSD), iterates randomly over all
agents, greedily choosing the current agents’ preferred service at each time step. Our deterministic
mechanism, derandomised RRSD (DRRSD), is a derandomised version of this algorithm and matches
the corresponding lower bound. Interestingly, we find that there is a strict separation of

√
S between

the achievable distortion by a deterministic and randomized mechanism.
Online SBM Algorithms. For the online setting of SBM, the agents do not know their

preferences and rewards and must learn their preferences via repeated matching to services. After
each matching, the agents update their preferences/rewards and strategically report them to the
planner. We design an approximately truthful mechanism based on the Explore-then-Commit
paradigm, which achieves sublinear dynamic approximate regret. In particular, we design a central
allocation mechanism which consists of two phases. In the first phase, it allows the participating
agents to use their favourite learning-to-rank with a fixed confidence algorithm. Using the learnt
estimates from this phase, the mechanism then runs RRSD in the second phase. By doing so, we
prove that the mechanism has a regret of O(log (NT )), compared to the performance of RRSD in the
offline setting.

1.2 Related Work

We provide a brief discussion of the related work in the matching and bandit literature and highlight
major differences comparing to our SBM models, which have not been considered previously.

Blocking Bandits. Our work in the online SBM models is closely related to the recent literature
on the blocking bandit models [9, 10, 12] where each pulled arm (i.e., services) can be blocked for a
fixed number of rounds. Our work is also related to bandits with different types of arm-availability
constraints [39, 34, 35]. However, these models do not consider the sequential matching setting
where multiple strategic agents have (possibly unknown) ordinal preferences over arms and report
ordinal preferences to the mechanism in order to be matched to some arms at each round.

Multi-agent multi-armed bandits. Our work is broadly related to the growing literature
on multi-agent multi-armed bandits [37, 44, 13]. Liu et al. [37] consider a matching setting where
strategic agents learn their preferences over time, and the center outputs a matching every round
based on their reported preferences. However, our setting is more challenging as we need to compete
against a dynamic offline benchmark because of the blocking of the arms, whereas the existing works
compete against a fixed benchmark e.g. repeated applications of Gale-Shapley matching in each
round [37].
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Ordinal Matching and Distortion. We consider the objective of maximizing expected rewards
as our offline benchmark. Since we do not observe the exact utilities of the agents rather ordinal
preferences over items, we use the notion of distortion [41] from voting to quantify such a benchmark.
In the context of voting, distortion measures the loss of performance due to limited availability of
reward profiles [14, 38, 5, 32, 6]. Our offline benchmark is related to the literature on the distortion
of matching [3, 19, 7]. However, our offline benchmark needs to consider repeated matching over
time, and because of the blocking of the arms, has a very different distortion than the distortion of a
single-round matching.

Online Matching. There are existing online notions of weighted bipartite matching (e.g., [28,
26, 27]) and stable matching (e.g., [33]) where the matching entities (e.g., agents or services) arrive
dynamically over time and the corresponding information in the notions is publicly known (e.g.,
weights of the matched pairs or agents’ ordinal preferences). These online settings are different from
our repeated matching settings where the entities do not arrive dynamically and our objective is
to maximize expected rewards of the repeated matching given agents’ ordinal preferences. Other
recent works explore dynamic preferences of the agents that can change over time (e.g., [40, 22, 23]).
However, they do not consider the problem of maximizing expected rewards and matching blocking.

2 Preliminaries

We consider a sequential blocked matching (SBM) model which takes place over T rounds. In such a
model, we have a set K = {1, . . . , N} of N agents. For each agent, there is a set S = {1, . . . , S} of S
reusable services available to be matched to the agent. Furthermore, we assume that S � N . No
generality is lost in making such an assumption, as we can always add services with zero rewards
and no blocking. With each agent-service pair, (i, j) ∈ K × S, we associate a mean reward µi,j ,
which represents the expected reward agent i receives when allocated service j under some unknown
distribution and is not known to the planner.

We denote by µi = (µi,1, . . . , µi,S) the vector of expected rewards associated with agent i. In what
follows, we will also refer to µi as the reward profile associated with agent i. Moreover, we restrict
ourselves to reward profiles which lie in the probability simplex. That is, we assume µi ∈ ∆S ∀i ∈ K.
In other words, we make a unit-sum assumption about the reward profile of each agent. Bounding
constraints on reward profiles are common in the ordinal one-sided matching literature [19], and
are typically required in order to prove lower bounds for truthful algorithms such as random serial
dictatorship (RSD). Moreover, the unit-sum assumption is prevalent in social choice theory [14].

At the start of each time step, each agent is required to submit ordinal preferences over services
to a central mechanism. In other words, each agent i must submit a linear ordering oi,t over services
to a central mechanism. We say that an agent submits its ordinal preferences truthfully if a �oi,t b
implies µi,a ≥ µi,b for all pairs of services a and b in S.

The central mechanism is then tasked with matching agents to services based on the ordinal
preferences submitted by each agent. At the end of each time step each agent i observes a reward
ri,t ∈ [0, 1] dependent on the service it was matched to. If agent i is mapped to agent j then ri,t is
sampled from a stationary distribution with mean µi,j . The agents submit their ordinal preferences
at each time step with the goal of maximising their cumulative rewards or utility over the time
horizon.

Matchings. More formally, we define a matching as a function from K to S ∪{0}, such that the
restriction of any matching to the inverse image of S is an injection. If an agent i is mapped to zero,
this implies the agent is allocated no services in the matching. We denote the set of all matchings by
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M. Given a matching m, we denote the service matched to agent i by m(i). We denote the empty
matching (the matching that does not match any service) by ∅.

We denote by M = (mt)
T
i=1 a sequence of T matchings, where each matching mt is associated

with a time step t. We denote byMT the set of all matching sequence of length T .
Blocking. Furthermore, we assume that when a service is matched, it is blocked for a time

period depending on the agent it was matched to. More specifically, when agent i is matched with
service j we assume that service j cannot be matched to any agent for the next Di,j − 1 time steps.
In what follows, we will refer to Di,j as the blocking delay associated with the agent-service pair i
and j. Additionally, we let D̃ denote the maximal blocking delay possible and let D denote the N by
S matrix of all blocking delays. From now on, we assume that all blocking delays are known apriori
by both the central mechanism and the agents. We say that a matching sequence M is feasible with
respect to the delay matrix D if no service is matched to an agent on a time step where it has been
blocked by a previous matching.

Definition 1. For a given blocking delay matrix D, the set of feasible matching sequences of length
T , MD

T ⊆MT , is the set of all matching sequences M ∈ MT such that for all t ∈ {1, . . . , T}, for
all i ∈ K, and all j ∈ S the following implication holds:

M(t, i) = j =⇒ M(t′, ·) 6= j ∀t′ such that t′ > t and t′ ≤ t+Di,j − 1.

Note that blocking of services is a common phenomenon in real-world scenarios. For example,
consider a setting in which each service corresponds to a freelance contractor, and each agent
corresponds to an employer. The matching of services and agents then corresponds to employers
contracting freelancers, For the duration of the contract, which may differ from employer to employer,
the matched freelancer is unavailable before returning to the pool of available services once their
contract ends.

Utilities and Welfare. We define the utility, Wi(M), agent i receives from a matching
sequence M as the sum of rewards it receives from each matching in expectation. That is Wi(M) =∑T

t=1 µi,mt(i). As previously mentioned, we assume that each agent submits ordinal preferences at
each time step with the goal maximising her own utility. Moreover, we define the social welfare,
SW(M), as the summation of the utilities of all agents. That is, SW(M) =

∑N
i=1Wi(M). The goal

of the central mechanism is to produce a feasible matching sequence which maximises social welfare.
Matching Policies. Let U be a random variable over some probability space (U,U ,Pu).

Furthermore, let O denote the set of all linear preference orderings over services. Let, π1 : U×ON ×
[D̃]N×S →M and πt : U ×Mt−1 ×ON×t × [D̃]N×S →M for t = 2, . . . be measurable functions.
With some abuse of notation, we denote by πt ∈M the matching chosen at time t:

πt =

{
π1(U,H1, D) t = 1

πt(π1, . . . , πt−1, Ht, D, U) t = 2, 3, . . .

where Ht = (o1,1, . . . . . . oN,1, . . . , o1,t, . . . oN,t) denotes the history of ordinal preferences submitted
by all agents up to time step t. The mappings {πt : t = 1, . . . , T}, together with the distribution Pu,
define the class of matching policies. We define the subclass P of admissible policies to be those
which always return feasible matching sequences. That is,

P =
{
π = (π1, . . . , πT ) : π ∈MD

T ,∀D ∈ [D̃]N×S , ∀HT ∈ ON×T
}
.
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Objective. For a given SBM instance, the goal of the mechanism is to find an admissible
matching policy which maximises the social welfare in expectation with respect to randomisation of
the policy, Eπ[SW(π)], under the assumption that agents will submit ordinal preferences with the
intention of maximising their own utilities in expectation (again, with respect to any randomisation
of the policy).

Settings. Of course, the difficulty of the problem depends on the information available to each
agent. In this paper, we consider two settings. In the simpler setting, we assume that each agent is
aware of its own reward profile in advance. We refer to this as the offline BLOCKMATCH problem.
Additionally, we consider and online version of BLOCKMATCH with bandit feedback. In the bandit
version of BLOCKMATCH, we assume that agents are not aware of their reward profiles in advance,
but after each time step observes the service they were matched to and the reward it received from
being matched. As a result, agents must tradeoff learning their own reward profile through the
submission of suboptimal preference orderings, with exploiting their current knowledge regarding
their true reward profile.

3 The Offline BLOCKMATCH Problem

We start with the analysis of the offline BLOCKMATCH problem. We first provide a lower on
the distortion achieved by both randomised and deterministic policies. Then, we briefly discuss
why trivial extensions of truthful one-shot one-sided matching algorithms do not result in truthful
mechanisms1. Instead, we focus on designing mechanisms which use truthful one-shot one-sided
matching mechanisms as basis, and have bounded incentive ratio (see below), a notion weaker than
truthfulness. More precisely, we describe the RRSD algorithm. We show that the incentive ratio of
RRSD is bounded by 1− 1/e, and provide upper bounds on the distortion of RRSD, which match our
lower bounds.

3.1 Lower Bounds on the Distortion of Randomised and Deterministic Policies

To evaluate the efficacy of a given policy we use distortion, a standard notion of approximation for
settings with ordinal preferences.

Definition 2. The distortion of a policy is the worst-case ratio (over all possible instances of the
offline BLOCKMATCH problem) between the expected social welfare of the matching sequence, π,
returned by the policy, and the social welfare of the optimal matching sequence, M∗T (µ,D) ∈ MD

T ,
under the assumption that agents will submit ordinal preferences truthfully:

sup
µ, D

SW(M∗T (µ,D))

E [SW(π)]

Note that distortion is the approximation ratio of the policy π with respect to best matching
sequence.

First, we prove that the distortion of any deterministic policy is Ω(S). That is, the distortion of
any deterministic policy scales linearly with the number of services in the best case. In the proof, we
first carefully construct a set of ordinal preferences. Then, given any matching sequence MT , we
show that there exists a set of reward profiles which induces the aforementioned ordinal preferences
and on which MT incurs distortion of order Ω(S). We defer the full proof to the appendix.

1By truthful we simply mean that, in order to maximise their own utilities, agents are motivated to submit a linear
preference ordering induced by their reward profile.
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Theorem 1. The distortion of any deterministic policy is Ω(S).

Next, we prove that the distortion incurred by any randomised policy is Ω(
√
S). To prove this,

we first show that it is sufficient to consider only anonymous policies. Then, we construct a set of
reward profiles which yields the desired distortion for all anonymous truthful policies. Once again,
we defer the full proof to the appendix.

Theorem 2. The distortion of the best randomised policy is Ω(
√
S).

3.2 Constructing Truthful Algorithms for the Offline BLOCKMATCH Problem

In the offline setting, each agent is aware of her expected rewards and the ordinal preference. However,
agents may still choose to submit false preferences, with the aim of increasing their own utilities. As
a result, the distortion incurred by a given policy may not reflect its performance in practice. Note
that in standard one-shot one-sided matching problems, this issue is sidestepped via the employment
of truthful mechanisms. That is, mechanisms that are constructed so that it is in the best interest of
each agent to submit their preferences truthfully, like RSD. In addition, the restriction to considering
truthful algorithms is well justified by the revelation principle. In a similar vein, we would like to
develop truthful algorithms for the offline BLOCKMATCH setting.

One may be tempted to apply such truthful one-shot mechanisms to our setting directly. That is,
to apply an algorithm such as RSD repeatedly at the start of each time step. This intuition is correct
when there is no blocking, as the matching problems for time steps are then independent of each other.
However, with blocking, the matchings from previous rounds will have a substantial effect on the set
of valid matchings in future rounds. As a result, immediately obvious approaches, such as matching
according to RSD repeatedly, do not result in truthful algorithms (see the appendix for an example).
One simple way of generating truthful policies is to run a truthful one-shot one-sided matching
mechanism once every D̃ time steps and simply return the empty matching ∅ in the remaining time
steps. Such an approach decouples each time step from the next, resulting in truthfulness, but comes
at the cost of only matching in at most dT/D̃e rounds.

Instead, we construct an algorithm for the offline BLOCKMATCH problem from truthful one-shot
matching algorithms in a different manner. More specifically, we propose the Repeated Random
Serial Dictatorship (RRSD) algorithm, which uses RSD as a basis. Whilst RRSD is not truthful, it does
have a bounded incentive ratio, a form of approximate truthfulness which will be defined shortly.

We write µi B oi to denote a reward profile µi consistent with the ordering oi i.e. a �o b implies
µi,a ≥ µi,b. Let o∗i denote the linear preference ordering induced by the reward profile µi. In other
words, o∗i represents agent i’s true preferences. We write π(O∗i , O

∗
−i) to denote the (potentially

random) matching sequence returned by policy π when all agents report truthfully in each round.
Similarly, let π(Oi, O

∗
−i) denote the (again, potentially random) matching sequence returned by

policy π when agent i submits preferences Oi = (oi,1, . . . , oi,T ) and all remaining agents report
their preferences truthfully in each round. We define the incentive ratio of a given policy π as the
worst-case ratio between the expected utility an agent receives when it reports truthfully, and the
maximum expected utility attainable.

Definition 3. The incentive ratio ζ(π) ∈ R+ of a matching policy π is given by:

ζ(π) = max
D, O∗−i, µiBo

∗
i

E[Wi(π(O∗i , O
∗
−i))]

maxOi E[Wi(π(Oi, O∗−i))]
(1)

The policy’s incentive ratio tells you how much an agent can gain via lying about their preferences.
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Algorithm 1: RRSD
Input : T , K, D, S
Output : MT // A greedy solution to the BLOCKMATCH Problem

1 MT = (mt)
T
t=1 = (∅)Tt=1 // Start with the empty matching sequence

2 Set C = K // Initialise set of agents which have not yet been matched
3 Observe (o1,1, . . . , oN,1)
4 while C 6= ∅ do
5 Sample i from C uniformly at random
6 for t = 1, . . . T do

/* Assign the best available service at time step t to agent i
according to her own preferences */

7 Set mt(i) = A(oi,1,MT , t);

8 end
9 C = C \ {i}

10 end
11 return MT

3.3 A Greedy Algorithm for the Offline BLOCKMATCH Problem

We are now ready to define the RRSD algorithm. In the first time step, RRSD observes the ordinal
preferences (o1,1, . . . , oN,1)submitted by each agent. In what follows, RRSD will slowly build up a
matching sequence MT = (mt)

T
t=1 over time by iterating through agents and time steps. In other

words, RRSD begins with the empty matching sequence, where mt = ∅ for all t.
To begin building up the matching sequence MT , RRSD samples an agent i uniformly at random

without replacement. RRSD then iterates through each time step in order. At time step t, RRSD
updates MT by assigning the agent service A(oi,1,MT , t), where A(oi,1,MT , t) denotes the best
available service according to the preference ordering submitted by agent i which is not blocked
at time step t in the current version of MT . RRSD repeats this process until no agents remain and
returns the finished matching sequence MT . The pseudocode for RRSD is given in Algorithm 1. In
summary, RRSD greedily assigns services to each agent for the entire time horizon in a random order.

Next, we show that RRSD has bounded incentive ratio. In particular the incentive ratio is bounded
by 1− 1/e as T →∞.

Theorem 3. The incentive ratio of RRSD is asymptotically bounded below by 1− 1/e.

The main idea behind the proof is as follows. Assume that once agent i is chosen by the RRSD, it
is free to choose any sequence of services to match to, as long as the previous blocking constraints
imposed by the current state of the matching sequence are not violated. Observe that this is simply
an offline blocking bandits problem with additional blocking constraints imposed on the agent by
the current state of the matching sequence. The sequence of services proposed by RRSD represents a
greedy solution to this problem. We then prove that such a greedy solution achieves an approximation
ratio of 1− 1/e asymptotically, which directly yields the result of the theorem. We defer the full
proof to the appendix.

Furthermore, under the assumption that agents submit their preferences truthfully, we prove
an upper bound on the distortion of RRSD, that matches the lower bound on the distortion of any
truthful policy as described in Theorem 2.
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Theorem 4. The distortion of RRSD is at most O(
√
S).

We now show that it is possible to match the lower bound with a deterministic policy. In fact,
the derandomized version of RRSD has distortion of at most O(S). The main idea is that we can
select O(N2 logN) permutations so that the number of times agent i is selected at j-th position
is Θ(N logN). Then we can run through these permutations one by one instead of selecting one
permutation uniformly at random. The details of the algorithm are provided in the appendix.

Theorem 5. There is a deterministic policy with distortion at most O(S) for any T ≥ O(N2 logN).

Note that, in practice, RRSD is not guaranteed to have an expected social welfare which matches
its own distortion upper bound, as RRSD is not truthful. However, if agents are lazy, in the sense
that they only care about receiving at least a 1− 1/e fraction of their optimal utility under RRSD, we
can assume that each agent will report truthfully. In such cases, RRSD will have an expected social
welfare matching its own distortion upper bound.

4 BLOCKMATCH with Bandit Feedback

We now turn our attention to the online BLOCKMATCH setting with bandit feedback. In this
setting, we assume that each agent is initially unaware of it true preference ordering. At the start of
each time step t, each agent i ∈ K simultaneously submits a preference ordering over services to
a central mechanism. The central mechanism then, according to a potentially randomised policy
π ∈ P, allocates each agent i a unique service π(i, t) ∈ S.

In the bandit setting, we have an additional layer of difficulty caused by the learning part (i.e.,
due to the uncertainty about the true ordering at the beginning, the algorithm might make several
mistakes until it gets a good estimate of the true ordering). A performance metric that is typically
used in the bandit literature to measure the efficiency of such learning algorithms in such uncertain
settings is the regret, which is defined as a difference between the performance of a learning algorithm
and that of the best fixed policy in hindsight (i.e., the policy that allocates the same service to
the same agent when it’s available). As we have already shown, even in the offline setting, finding
the optimal policy π∗ is computationally intractable. Thus, we cannot expect this best fixed in
hindsight policy to have good performance in general (compared to that of the offline optimal),
and therefore, would not serve as a good benchmark. As a result, we shall use the following regret
definition instead:

Dynamic approximate regret. We compare the performance of a policy to the dynamic oracle
algorithm which returns the optimal offline solution of BLOCKMATCH. We define the α-regret
under a policy π ∈ P as the difference between an (offline) α-optimal policy and the expected
performance under policy π. More precisely, let π∗ denote the policy of the dynamic oracle algorithm.
The α-regret of a policy π ∈ P against π∗ is defined to be

Rαπ(D,µ, T ) = αE[SW(π∗)]− E[SW(π)]

where the expectation is taken over all possible randomisation of the policy π∗.This definition is
useful if we want to use an offline algorithm with provable distortion guarantees. For example, if we
compare the performance of our learning algorithm against an offline mechanism with α distortion,
then the difference is in fact a dynamic 1/α-regret.

We are also interested in the performance of each single agent in this setting. Overall, if an
allocation cannot guarantee personal performance fitness for each agent, then it is unlikely that the
agents will follow that mechanism. To this end, we define the following:
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Approximate incentive compatible regret. We recall some of the notations from Section 3.
In particular, we denote by Oi the collection of reports agent i sends to the mechanism during its
whole scope. Similarly, O−i is the collection of reports agents other than i sends to the mechanism.
Finally, we denote by π(Oi, O−i) the allocation done by policy π and caused by the received reports
Oi and O−i, respectively. For a given π, we define agent i’s α-IC regret (or α incentive compatible
regret) for reporting report Oi as:

Rαπ,z(D,µ, T ) = αmax
O′i

E[r(π(O′i, O−i))]− E[r(π(Oi, O−i))]

Ideally, we aim to design a mechanism where truthful reporting enjoys a bounded α-IC regret.
We now turn to the design of learning algorithms for the SBM problem in the bandit setting.

The key challenge in this setting is that the agents need to both estimate their own true preference
ordering as well as to optimise their total rewards and utilities over the finite time horizon T . To
do so, agents can turn to bandit algorithms, which typically fall within two classes, namely: (i)
explore-then-commit (ETC) [31, 20], where agents dedicate the first block of time steps to purely
learn the ordering (i.e., to explore), and then use that estimated ordering to perform requests
for the allocations (the commit phase); and (ii) sequential approach [8, 1], where agents both
sequentially update their estimates and optimize without clear separated blocks of these two tasks.
It is easy to show that if we apply the latter to our setting, it would be very difficult to guarantee
(approximate)-truthfulness. In particular, agents could strategically lie about their current estimates
in order to influence the future allocations that may lead to better exploration or exploitation. As we
conjecture it is not possible to derive meaningful incentive ratio and other approximate-truthfulness
guarantees for this case, we opt for the ETC based approach in this paper.

Our central mechanism can be described as follows. We consider two phases, in the first phase,
the mechanism lets the agents learn their ordering. We refer to this as the exploration phase. At the
beginning of the second phase, the central mechanism will ask the agents to submit their ordering,
learnt during the exploration phase. The mechanism then runs RRSD with the reported orderings.

While the second phase is straightforward given the description of RRSD in Section 3, it is not
trivial how to efficiently coordinate the allocations between the agents in the first phase. In particular,
the first challenge is to decide when to stop the exploration phase. The second challenge comes from
the blockings. That is, how to allocate the services to the agent such that the total time spent on
the exploration phase is minimised. This is crucial shorter the exploration phase is, the smaller the
regret will be [20, 31]. To tackle both challenges, we propose the following protocol.

Multi-agent learning-to-rank. Suppose each agent i has their favourite learning-to-rank
algorithm [30, 29, 36], denoted as BASEi, which is used to learn the service ordering of agent i.
We assume that each BASEi possesses the following properties (which are common in most of the
learning-to-rank algorithms in the literature):

• It runs in epochs. Within each epoch, the number of pulls per each arm is specified at the
beginning of that epoch (epoch length can also be 1, in that case it only pulls 1 single arm).

• There is a stopping condition which terminates the algorithm, and the algorithm terminates
almost surely. Let τi denote the random variable that captures the total number of samples
(i.e., the total sum of allocation of agent i over all the services) until termination.

• There is an algorithm specific coefficient Hi > 0 such that the following holds: For any δ ∈ (0, 1)
we have P (τi ≤ Hi log(1/δ)) > 1− δ.
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Given these assumptions, we now turn to the description of the multi-agent learning-to-rank protocol,
which consists of the following steps: We run in epochs. For each epoch r we maintain a set of active
agents who are still participating in that epoch. For r = 1, all the agents are active. Then for each
current epoch r ≥ 1:

1. Let ni,j(r) denote the total number of times active agent i requests to be allocated to service j
within this epoch (this is determined by BASEi).

2. We fix the order of the agents in some arbitrary way. We also fix the order of the services per
agent, also in an arbitrary way.

3. We then use the following simple greedy approach to schedule the set of {ni,j(r)}i allocation
requests. At each time step t within the current epoch r, we go through the agents in the
order above and we assign the first available service (i.e., no blocking and no collision with the
others) to that agent if there are any.

4. We stop the epoch when all the allocation requests from ni,j(r) have been allocated and all
the services are available again for all the agents (this would allow us to start the next epoch
without any blockings).

5. If BASEi indicates that agent i should stop then agent i reports this to the central mechanism,
which then eliminates agent i from the list of active agents. The whole protocol stops when
there are no more active agents. Otherwise, it moves to the next epoch with the remaining
active agents.

We refer to this protocol as synchronous multi-agent learning-to-rank (sync-MALTR) as opposed to
its asynchronous version. In particular, asynchronous multi-agent learning-to-rank (async-MALTR)
does not need to wait until all the services are available again to move to the next epoch, but allows
each individual agent to move to their own next epoch as soon as their allocation requests in the
previous epoch have been fulfilled.

Regret analysis. We now turn to the performance analysis of our central mechanism, that uses
multi-agent learning-to-rank protocol for exploration, and the RRSD for the second phase.

Theorem 6. The following statements are true:
(i) The expected dynamic 1/

√
S-regret of the central mechanism is at most O(D̃

∑
iHi log (NT )).

(ii) For each agent i, reporting truthfully after the exploration phase would yield an expected (1−1/e)-
IC regret of O(Hi log (NT )).
(iii) Using async-MATLR, the number of time steps needed in the exploration phase is at most twice
as many as the optimal allocation requires.

Note that since the BASE algorithms are quite generic, it is difficult to improve the D̃
∑

iHi

coefficient in the regret bound. However, we will show in the appendix that by using more specific
learning-to-rank algorithms, this value can be significantly improved.

5 Conclusions and Future Work

In this paper, we introduced the sequential blocking matching (SBM) model to capture repeated
one-sided matching with blocking constraints. Our offline benchmarks chart the performance of
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deterministic and randomized policies in terms of distortion and incentive ratio. On the other hand,
our online algorithm provides sublinear dynamic approximate regret.

There are many interesting directions for future work. It would be interesting to consider a two-
sided matching problem [42] where the services / items also have preferences over the agents and such
preferences need to be learned over time. Another important direction is the design of decentralized
mechanisms where the learning agents choose services independently. Finally, we assumed that the
preferences are static over time, but the agents may not be aware of them. In practice, the agents’
preferences can change with time [11], and such dynamics need to be incorporated in the design of
repeated matching algorithms.
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A Proofs for Section 3

A.1 Proof of Theorem 1

Proof. Without loss of generality we can assume that N = S. In case N < S, our lower bound
example can be extended by assuming that all the players have value 0 for S −N services.

Therefore, we now consider an instance of BLOCKMATCH with N agents and N services, where
each agent has the same preferences. For simplicity assume that service 1 is most preferred, service
2 the next, and so on, until service N . Furthermore, assume that the blocking delay on each of the
N services is D̃. We add additional services as needed to ensure that a service is always available
to each agent. Note that we need to add at most N services with no blocking delays. All of these
’empty’ services appear at the end of the agents’ preferences. Given a matching sequence, π, output
by a policy, we will assign rewards vectors, µi, to each agent i, which induce the preference ordering,
in the following manner.

There must exist some agent, i1 ∈ K, who is assigned service 1 at most T/D̃N times. We set
µi1 = (1, 0, . . . , 0). Discarding agent i1, there must exist an agent, i2, who is assigned service 1 or 2
at most T/D̃(n− 1) times. We set µi2 = (1/2, 1/2, 0, . . . , 0). Again, we discard agent i2, and find
the agent i3 who has been assigned services 1, 2 or 3 at most T/D̃(N − 2) times, and assign the
reward vector µi3 = (1/3, 1/3, 1/3, 0 . . . , 0). We proceed in this manner for a total of N steps until
all agents are assigned preferences.

Given the assigned reward vectors, it is obvious that an optimal matching sequence assigns
service j to agent ij whenever the service is available. This optimal matching sequence achieves a
total expected welfare of order O(log (N)T/D̃). In comparison, the matching proposed by the policy
achieves welfare at most O(log (N)T/D̃N). As a result, for any matching sequence returned by the
policy, there is a set of reward vectors such that the distortion is of order O(N) = O(S).

A.2 Proof of Theorem 2

Proof. By an argument similar to the proof of Theorem 1, without loss of generality we can assume
there are N agents and N services. We will construct an example where all the blocking lengths Dij-s
are identical (e.g. say D). First, we show that it is sufficient to consider anonymous mechanisms.
Given a preference profile o, let Aij(o) ∈ {0, 1, . . . , T} be a random variable that indicates the
number of times agent i was allocated service j. We will call a randomised matching algorithm
anonymous if E[Aij(o1, . . . , oN )] = E[Aσ(i)j(oσ(1), . . . , oσ(N))] for all permutations σ. Suppose we are
given a matching algorithm that has distortion at most ρ i.e.

∑
ij µijE[Aij(o)] ≥ ρOPT(µ). Now

we consider a new matching algorithm that selects a permutation σ uniformly at random and then
applies the same algorithm on the input oσ = (oσ(1), . . . , oσ(N)). Then the expected social welfare of
the new algorithm is

Eσ

∑
ij

µσ(i)jAσ(i)j(oσ)

 ≥ Eσ [ρOPT(µσ)] = ρOPT(µ)

The first inequality follows because the original mechanism gives ρ distortion even when applied to
the profile µσ and the second equality follows because the optimal welfare (OPT(µ) =

∑
ij µijA

∗
ij)

is invariant to permutation. Therefore, the new anonymous mechanism has distortion at most ρ.
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We now construct a reward profile which is very similar to the one constructed in the proof of
Lemma 8 of [19]. Consider the following reward profile.

∀i ∈ [
√
N ], µi,j =

{
1−

∑
j 6=i µi,j if j = i

N−j
10N3D

o.w.

∀` ∈ [
√
N − 1], µi+`

√
N,j =


1−

∑
j 6=i µi,j if j = i

1√
N
− j

10N2 if j 6= i & j ≤
√
N

n−j
10N3D

o.w.

The N agents are grouped into
√
N groups and all agents in group i have the same preference order.

Let Gi = {i} ∪
{
i+ `
√
N : ` = 1, . . . ,

√
N − 1

}
. Then all the agents in group Gi have preference

order i � 1 � . . . � i− 1 � i+ 1 � . . . � N . Therefore, for any item j, all the agents in group Gi
have the same expected number of allocations. Let us call this number of allocations Tij . Since any
item j can be allocated at most T/D times we have

√
N∑

i=1

∑
p∈Gi

Tij ≤
T

D
⇒

√
N∑

i=1

Tij ≤
T

D
√
N

(2)

We now bound the expected welfare of any randomized and anonymous matching algorithm with the
given reward profile. For any agent i ∈ [

√
N ], the maximum expected utility over the T rounds is at

most Tii+
∑

j 6=i Tij
N−j
10n3D

≤ Tii+O
(
T
ND

)
. Now consider an agent i+`

√
N for ` ∈ [

√
N−1]. Such an

agent’s utility over the T rounds is at most TiiO
(

1√
N

)
+
∑

j 6=i,j≤
√
N Tij

1√
N

+
∑

j>
√
N Tij

N−j
10N3D

≤

O
(

1√
N

)∑√N
j=1 Tij +O

(
T
ND

)
. Therefore, the total utility over all the N agents is bounded by

√
N∑

i=1

Tii +O

(
1√
N

) √N∑
i=1

√
N−1∑
`=1

√
N∑

j=1

Tij +O

(
T

D

)

≤

√
N∑

i=1

Tii +

√
N∑

i=1

√
N∑

j=1

Tij +O

(
T

D

)

≤ 2

√
N∑

j=1

√
N∑

i=1

Tij +O

(
T

D

)

≤ 2

√
N∑

j=1

T

D
√
N

+O

(
T

D

)
= O

(
T

D

)

The last line uses equation (2). On the other hand, any deterministic and non-anonymous allocation
rule that always assigns item i agent i everyD rounds achieves a welfare of at least

√
N T

D (1− 1
10ND ) ≥

O
(
T
√
N

D

)
. This establishes a bound of O(

√
N) = O(

√
S) on distortion.
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A.3 Proof of Theorem 3

Proof. Without loss of generality, assume that agent k is selected at random in the kth position by
RRSD. Assume, for the moment, that agents 1 to k − 1 are not allocated any services. Additionally,
suppose that agent k is free to choose its own allocation of services independent of the RRSD
algorithm. Under these assumptions, agent k is posed with an offline blocking bandits problem as
described in [10]. The solution proposed by RRSD corresponds to a greedy approach in which the best
service available is allocated at each time step. Thus, proving that such a greedy algorithm has an
approximation ratio of 1− 1

e implies the result in this restricted case. This fact was proven in [10].
We will show that this result holds more generally, regardless of the allocations chosen by RRSD

in previous time steps. Again, assume agent k is free to choose its allocation, independent of RRSD.
That is, agent k is tasked with solving the following integer linear programming problem (ILP):

max
xt,s

T∑
t=1

n∑
s=1

µk,sxt,s

s.t. xt,s ∈ {0, 1}
yt,s + xt,s ≤ 1 ∀t ∈ [T ],∀s ∈ S
N∑
s=1

xt,s = 1 ∀t ∈ [T ]∑
t∈[Dk,s]

xt+t0,s ≤ 1 ∀t0 ∈ T, ∀s ∈ S

The variables xt,s indicate whether agent k is matched to service s at time step t. Meanwhile, the
constants yt,s indicate whether agent k cannot be matched to service s due to delay constraints
imposed by allocations of service s to agents 1 through k − 1. The second set of constraints ensure
that the matches chosen by agent k do not breach the delay constraints imposed by preexisting
matches between services and agents 1 to k − 1. The third set of constraints ensure that agent k
may only be matched to one service at each time step. Lastly, the fourth set of constraints ensure
that agent k chooses a sequence of matches which obeys its own delay constraints.

Computing the upper bound of the optimal solution. We derive an upper bound for this
ILP through a series of relaxations. First of all, we relax the integer constraints, so that at each time
step agent k can match to a fractional mixture of services. Additionally, we replace the constants yt,s
with variables zt,s constrained to lie in [0, 1]. The idea in introducing these variables is to remove the
blocking constraints imposed by the previous players and replace it with a constraint that stipulates
that the total reduction in the time horizon available for agent k to match itself each service s must
remain the same. That is, agent k is free to fractionally redistribute the blocked parts of the time
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horizon imposed by the previous k − 1 agents. This results in the following linear program (LP):

max
xt,s, zt,s

T∑
t=1

N∑
s=1

µk,sxt,s

s.t. xt,s ∈ [0, 1]

zt,s + xt,s ≤ 1 ∀t ∈ [T ], ∀s ∈ S
N∑
s=1

xt,s = 1 ∀t ∈ [T ]

T∑
t=1

zt,s =
T∑
t=1

yt,s ∀s ∈ S, ∀j ∈ [k − 1]∑
t∈[Dk,s]

xt+t0,s ≤ 1 ∀t0 ∈ T, ∀s ∈ S

It should be immediately obvious that this problem can be reformulated further, and, in fact, the
individual fractional matches per time step can be replaced with fractional matches of agents to
services for the entire time horizon. Similarly, the newly introduced auxiliary variables zt,s can be
removed completely. In other words, it is clearly optimal for agent k to spread the blocked parts of
the time horizon evenly across all time slots, and then greedily match services to itself in each time
step whilst obeying its own delay constraints. Therefore, it only matters how often each service is
matched to agent k, as the fractional amount matched for every time step will be the same. This
leads us to the following, equivalent, LP reformulation:

max
ns

N∑
s=1

nsµk,s

s.t. ns ∈ [0, T/Dk,s]

ns +
T∑
t=1

yt,s ≤ T ∀s ∈ S

N∑
s=1

ns = T

Additionally, we define Cs = {t ∈ [T ] : yt,s = 1} as the set of time slots in which agent k cannot (in
practice) be matched with service s because of delay constraints imposed by previous agents. Next,
we show that this LP can be further formulated as a fractional bounded knapsack problem as follows:

Consider each s as an item with weight Dk,s and value µk,s, and ns is the (fractional) number of
times we pack item s into the knapsack (whose capacity is T ). Note that the maximum value ns can
get in the previous LP is determined by the pattern of Cs, and is also capped by T/Dk,s. Therefore, in
our bounded knapsack formulation, we can replace the constraints of ns to be ns ≤ T/Dk,s−bs where
bs is the number of blocks caused by Cs. Note that in general bs 6= |Cs|, as it heavily depends on the
pattern of the blocks. Since ns ≥ 0, we have that T

Dk,s
≥ bs. Now, it is well known that this fractional

bounded knapsack admits the optimal solution ∀s ∈ S, n∗s = min{T/Dk,s− bs, (T − bs−
∑s−1

j=1 n
∗
j )

+}.
Computing the lower bound of the greedy sequence of matches. Now consider the

greedy sequence of matches for agent k generated by the RRSD algorithm. Let ngs denote the number
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of times service s is matched to agent k by RRSD. Similarly let Ns denote the set of time slots in
which agent k is allocated services 1 to s− 1. The time slot where the periodic matching of service s
to agent k collides with previous matches is denoted by cols = {t ∈ Ns ∪ Cs : Dk,s | t} The number
of times service s is matched to agent k is at least d(T − |cols|)/Dk,se. This holds because for service
s we can remove the time slots with collisions and perform periodic placement perfectly with the
remaining. T − |cols| time slots. Note that |cols| ≤

∑s−1
j=1 n

g
j +

∑T
t=1 yt,s − |Ns ∩ Cs|.

We now define for each s ∈ S, n′s = Ts/Dk,s − bs, where bs is defined as the number of blocks

caused by Cs from the previous agents, and Ts =
(
T −

∑s−1
j=1 n

′
j + |Ns ∩ Cs|

)+
. That is, intuitively

we can remove the time slots blocked by previous service matches and then match service s to agent
k with period Dk,s. We claim that

∑s
j=1 n

g
j ≥

∑s
j=1 n

′
j . In turn, this immediately implies that∑|S|

s=1 n
g
sµk,s ≥

∑|S|
s=1 n

′
sµk,s.

We prove the claim using induction on s. We know that ng1 ≥ d(T − b1)D1,ke, so the base case is
satisfied. By the inductive hypothesis, assume that

∑s
j=1 n

g
j ≥

∑s
j=1 n

′
g for all s < s′. We have:

ngs′ ≥ d(T − |cols′ |)/Dk,s′e ≥
1

Dk,s′

T − s−1∑
j=1

ngj − bs′ + |Ns′ ∩ Cs′ |


=

1

Dk,s′

T − s−1∑
j=1

n′j −
s−1∑
j=1

(
ngj − n

′
j

)
− bs′ + |Ns′ ∩ Cs′ |

 = n′s′ −
1

Dk,s′

s−1∑
j=1

(
ngj − n

′
j

)
Thus we have that

∑s′

j=1(ngj −n′j) ≥ (1− 1/Dk,s′)
∑s′

j=1(ngj −n′j), which means
∑s′

j=1 n
g
j ≥

∑s′

j=1 n
′
j ,

and thus the inductive hypothesis is proved.
Bounding the incentive ratio. Note that for any s, if T

Dk,s
= bs then both the upper bound

and lower bound solutions will not contain service s (as n′s ≤ n∗s = 0). Therefore, w.l.o.g. we assume
that T

Dk,s
> bs. We set D′k,s such that 1

D′k,s
= 1

Dk,s
− bs

T . With induction in s we can show that

n′s = T
D′k,j

∏s−1
j=1(1−

1
D′k,j

). In addition, we can also show that n∗s ≤ T
D′k,s

+ 1. The lower bound for

the incentive ratio then follows from the proof of [10] by optimsing over D′k,s. This indicates that
the incentive ratio is asymptotically bounded below by 1− 1/e.

A.4 Description of DRRSD and Proof of Theorem 5

Algorithm 2 describes a deterministic sequential blocking matching algorithm. This algorithm is a
derandomized version of Algorithm 1. By lemma 1 we can select a set of permutations so that each
agent i becomes j th selected agent at least 1/2N times. Given such a collection of P permutations,
algorithm 2 partitions T intervals into P groups, each of length T/P . At the start of group i, the
algorithm orders the agents according to the i-th permutation, and allocates services in that order.

Lemma 1. There exists a set of 4N2 log(N) permutations over N agents such that the fraction of
times item i appears at the j-th position is at least 1

2N .

Proof. The proof is by the probabilistic method. Let us draw P permutation over the N items
uniformly at random. Let Xij be the fraction of times item i appears at j-th position over the P
permutation. Then E[Xij ] = 1/N . Moreover, from the Chernoff-Hoeffding inequality,

P

(
Xij ≤

1

2N

)
≤ 2e−2P

1
4N2 = 2e−

P
2N2 .
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Algorithm 2: DRRSD (Derandomized RRSD)
Input : T , K, D, S, and a set of P = 4N2 log(N) permutations {σ1, . . . , σP }
Output : MT // A greedy solution to the BLOCKMATCH Problem
// Initialize matching sequence to the empty sequence

1 MT = (mt)
T
t=1 = (∅)Tt=1

2 Observe (o1,1, . . . , oN,1)
3 for t = 1, . . . , T do
4 if t = (p−1)×T

P then
// Select p-th permutation σp.

5 for i = 1, . . . , N do
/* Agent σp(i) is assigned her favourite service at time t among the

available services. */
6 Set mt(σp(i)) = A(oσp(i),1,MT , t)

7 end
8 CUR = p

9 end
10 for i = 1, . . . , N do

// Decide whether to unmatch agent i with service mt(i)

11 if t+Di,mt(i) >
CUR×T
P then

12 Set mt(i) = 0
13 end
14 end
15 end
16 return MT

Moreover, by a union bound over the N items and N positions we get that

P

(
∃i, j Xij ≤

1

2N

)
≤ 2e−

P
2N2 .

Therefore, if P ≥ 4N2 log(N), the probability of observing a set of permutations such that each
Xij ≥ 1/2N is positive. This implies that if P = 4N2 log(N), we can find a required set of
permutations.

A.5 Proof of Theorem 4

Proof. Our proof proceeds by upper bounding the distortion of RRSD by the distortion of RSD on a
new reward profile. Let SW(π?, µ) be the social welfare of the optimal policy π? given the reward
profile µ = (µ1, . . . , µn). Then the distortion of RRSD is given as

ρ = sup
µ

SW(π?, µ)

Eπ∼RRSD[SW(π, µ)]

Consider the new utility profile µ̃i,j = µi,j/Di,j for all i ∈ [N ] and j ∈ [S]. We will write SW0(σ, µ̃)
to denote the social welfare of a (one-shot) matching with the utility profile {µ̃}Ni=1. Then we claim
that SW(π?, µ) ≤ T · SW0(σ

?, µ̃) for some (one-shot) matching σ?.
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In order to see why the above claim is true, consider a different version of the online blocking
matching problem where the arms are not blocked, and if we allocate arm j to agent i, we get a
utility of µ̃i(j). Given π?, we construct a new policy π# for the new version of the blocked matching
as follows. Whenever π?t (i) = j, we set π#t′ = j for t′ = t, t + 1, . . . , t + Di,j − 1. Note that this
is always possible, as pulling arm j for agent i, makes that arm blocked for Di,j rounds in the
original version of the problem. Moreover, if agent i gets utility of ui(j) from one allocation to
arm j, the same agent gets utility of Di,j × µ̃i,j = µi,j under the new policy π#. This implies
that SW(π?, µ) = SW(π#, µ̃). Now observer that under the new unblocked version of the problem
there is no blocking constraint, so we can determine the best one-shot matching (say σ?) and apply
it repeatedly over T rounds to get the optimal social welfare over the T rounds. This gives us
SW(π?, µ) = SW(π#, µ̃) ≤ T · SW0(σ

?, µ̃).
We now prove Eπ∼RRSD[SW(π, µ)] = TEσ∼RSD[SW0(σ, µ̃)]. Suppose an agent i is assigned item j

by the initial random draw of RRSD. Then agent i is assigned item j every Di,j rounds. Therefore,
conditioned on the event, the total utility of agent i is T/Di,j ·µi,j . On the other hand, the event that
agent i is assigned item j has the same probability under one-shot RSD, and agent i’s utility in one
round is µ̃i,j = µi,j/Di,j , which is exactly 1/T fraction of agent i’s utility under RRSD, conditioned
on the same event. As all the events of the form agent i is assigned item j have the same probability
both under RRSD and RSD, we have Eπ∼RRSD[SW(π, µ)] = TEσ∼RSD[SW0(σ, µ̃)].

We now bound the distortion of RRSD as follows.

ρ = sup
µ

SW(π?, µ)

Eπ∼RRSD[SW(π, µ)]
≤ sup

µ̃

T · SW0(σ
?, µ̃)

TEσ∼RSD[SW0(σ, µ̃)]
= sup

µ̃

SW0(σ
?, µ̃)

Eσ∼RSD[SW0(σ, µ̃)]

Since the last quantity is just the distortion of RSD under a one-shot matching problem, we can
apply Lemma 4 from [19] and get a bound of O(

√
S) on the distortion.

A.6 Proof of Theorem 5

Proof. We will write ij to denote agent i-s j-th favourite item, and µi,j to denote the corresponding
mean reward. By Lemma 2, agent i gets her j-th favourite item in at least P

2N groups. Within any
such group, there are T/P time slots, and agent i is assigned her j-th favourite arm for at least⌊
T/(PDi,ij )

⌋
times. Therefore, the total welfare guaranteed by DRRSD is at least

N∑
i=1

S∑
j=1

µi,j
P

2N

⌊
T

PDi,ij

⌋
≥

N∑
i=1

S∑
j=1

µi,j
P

4N

T

PDi,ij

=
T

4N

N∑
i=1

S∑
j=1

µi,j
Di,ij

On the other hand, consider a matching algorithm that assign item ij to agent i exactly Ai,j
times. Whenever item j is matched to agent i, it is blocked for Di,ij rounds. This implies that
Ai,j ≤ T/Di,ij . Therefore, the maximum welfare achievable by such a matching algorithm is at most

N∑
i=1

S∑
j=1

µi,jAi,j ≤
N∑
i=1

S∑
j=1

µi,j
T

Di,ij

This establishes that the distortion of DRRSD is at most 4N = O(S).
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B Proofs for Section 4

B.1 Proof of Theorem 6

We restate the three claims of the theorem below:
(i) The expected dynamic 1/

√
S-regret of the central mechanism is at most O(D̃

∑
iHi log (NT )).

(ii) For each agent i, reporting truthfully after the exploration phase would yield an expected (1−1/e)-
IC regret of O(Hi log (NT )).
(iii) Using async-MATLR, the number of time steps needed in the exploration phase is at most twice
as many as the optimal allocation requires.

Proof. We consider a more general case where we do not have any further assumptions on BASEi.
Claim (i) can be proved as follows. By assumption, we know that each BASEi would need an
expected number of Hi log(1/δ) pulls to learn the correct ranking with at least (1− δ) probability.
By setting δ = 1

NT for all BASEi, we have that in expectation, the total number of pulls required
by the agents is

∑
iHi log(NT ). As pulling an arm would come with a blocking delay of Di,j ≤ D̃

(where the (i, j) pair denotes that agent i pulls arm j), the total time needed to schedule these∑
iHi log(NT ) pulls is at most D̃

∑
iHi log(NT ). Note that since we do not have any further

information on BASEi, it is typically not possible to further improve this bound.
Now we turn to the second phase. Using the union bound, we can easily show that after MATRL,

each agent will learn their correct ranking of the arms with at least (1− 1/T ) probability. Unless
explicitly stated, we will consider this case (i.e., all the agents have their correct ranking). For the
sake of simplicity, let OPT denote the social welfare of the optimal offline matching M∗T (µ,D) (i.e.,
OPT = SW(M∗T (µ,D)). In addition, let OPT2 denote the the social welfare of the optimal offline
matching for the remaining time steps in the second phase. As each reward is bounded between
[0, 1], it is easy to show that

E [OPT2] ≥ OPT− D̃
∑
i

Hi log(NT ) (3)

where the expectation is on the length of the MALTR phase. This implies that the performance of
RRSD, denoted by SW(RRSD), can be bounded below as follows:

E [SW(RRSD)] ≥ 1√
S
OPT− 1√

S
D̃
∑
i

Hi log(NT ). (4)

For the case when at least 1 agent does not learn the correct ranking, the regret suffered by RRSD
is bounded above by NT . But this case only occurs with at most 1/T probability. Combining these
2 cases together, we have that the (dynamic approximate) 1/

√
S-regret of RRSD can be bounded

above by 1√
S
D̃
∑

iHi log(NT ) +N .
To prove claim (ii), note that due to RRSD, if an agent changes its own preference report Oi,

then it can only affect its own sequence of pulls. Therefore, by following a similar argument as above,
and replacing the distortion bound with the incentive ratio bound, we get that the 1− 1/e-IC regret
of each agent is 1√

S
D̃
∑

iHi log(NT ) + 1.
Finally, to prove claim (iii), we consider the following scheduling problem:
Open Shop Scheduling: An instance of the open shop problem consists of a set of N machines

and S jobs. Associated with each job s is a set of N independent tasks s1, . . . , sN . The task sk for
job s must be processed on machine k for an uninterrupted Ds,k time units. A schedule assigns
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every task sk to a time interval Ds,k so that no job is simultaneously processed on two different
machines, and so that no machine simultaneously processes two different jobs. The makespan Cmax
of a schedule is the longest job completion time. The optimal makespan is denoted by C∗max.

It is easy to show that in our case, we need to schedule the pulls within the MALTR phase. As it
can be shown that a greedy algorithm is a 2-approximation algorithm for the Open Shop Scheduling
problem [46], we just need to observe that async-MATLR is that greedy algorithm.

C Computational complexity of BLOCKMATCH

In this section, we investigate the computational complexity of the offline BLOCKMATCH problem.
Observe that, when there is only one agent, BLOCKMATCH corresponds to the stochastic blocking
bandit problem defined in [10]. Therefore, offline BLOCKMATCH inherits the complexity issues
of the offline stochastic blocking bandit problem. More precisely, even when the mean rewards
are known to the central mechanism, there is no pseudopolynomial time algorithm for offline
BLOCKMATCH unless the randomised exponential time hypothesis [15] is false. In their proof
of this result for stochastic blocking bandits, [10] perform a reduction from the PINWHEEL
SCHEDULING problem [21]. For the sake of clarity, we provide an essentially identical reduction
for the offline BLOCKMATCH problem in the proof below.

Theorem 7. Even if the central mechanism is aware of the reward profile of each agent, the offline
BLOCKMATCH problem does not admit a pseudopolynomial time policy unless the randomised
exponential time hypothesis is false.

Proof. We show the hardness of the BLOCKMATCH problem by reducing from the PINWHEEL
SCHEDULING problem defined as follows:

PINWHEEL SCHEDULING [21]: Given a set of tasks, S = {1, . . . , N}, with minimum
repeat times, {dj ∈ N : j ∈ S}, the PINWHEEL SCHEDULING problem is to decide whether there
exists a schedule (i.e. a mapping Σ : [T ]→ S for any T ≥ 1) such that for each task j ∈ S and every
consecutive sequence of time steps of length dj , task j is performed at least once. Note that only
one task can be performed per time step.

We call such a schedule, if it exists, a valid schedule. A PINWHEEL SCHEDULING instance
with a valid schedule is a YES instance, ohterwise it is a NO instance. A PINWHEEL SCHEDULING
instance is called dense if

∑N
j=1

1
dj

= 1.
Given a dense instance of a PINWHEEL scheduling problem we construct an instance of the

offline BLOCKMATCH problem in the following manner. We consider an offline BLOCKMATCH
instance with a single agent and a set of N + 1 services. For each task j we associate a service j and
set the mean reward of all such services to 1

N . The blocking delay of each service is set equal to dj ,
the minimum repeat time of the associated task. Additionally, we include one more service, with
mean reward equal to zero, and no blocking delay.

Case 1: PINWHEEL SCHEDULING instance is a YES instance, i.e. there exists a valid schedule.
Furthermore, as the instance is dense, each task must appear with exact period dj in the schedule.
Additionally, for all T ≥ 1, there are no empty time slots in the schedule. This implies that
assigning the agent services according to the valid schedule is an optimal policy according to the
BLOCKMATCH problem with cumulative reward T/N in in T time slots, for any T ≥ 1.

Case 2: PINWHEEL SCHEDULING instance is a NO instance, i.e. there does not exist a valid
schedule. This implies that, for any schedule, there exists a block of dj time slots such that task
j is not performed in that block, for some j ∈ S. As the instance is dense, this implies that there
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must exist a gap in any schedule. In turn, this implies that in the offline BLOCKMATCH problem,
any valid policy must assign the agent service N + 1 at least once. Moreover any valid schedule is
periodic with period at most ΠN

j=1dj . Together, these facts imply that for T ≥ 1 we can achieve at

most
(
T − bΠN

j=1djc
)
welfare.

Thus, for large enough T , there is a non-zero gap in the welfare obtained in both cases. There-
fore by solving the given BLOCKMATCH instance, we can determine whether the PINWHEEL
SCHEDULING instance is a YES instance or a NO instance. The result then follows from Theorem
3.1 and Theorem 24 of [25]. More specifically, in [25] it is shown that PINWHEEL SCHEDULING
with dense instances does not admit any pseduopolynomial time algorithm unless the randomised
exponential time hypothesis is false.

D Updates and Corrections

• The pseudocode for RRSD has been updated. More precisely, the output line was changed to
use the correct notation and single line comments have been updated to match the formatting
of multi-line comments. In addition, a few simple comments have been added.

• The big O notation was updated to be made consistent in each theorem statement.

• References were added for PINWHEEL SCHEDULING [21, 25] and the randomised exponential
time hypothesis [15].

25


	Introduction
	Main Contributions
	Related Work

	Preliminaries
	The Offline BLOCKMATCH Problem
	Lower Bounds on the Distortion of Randomised and Deterministic Policies
	Constructing Truthful Algorithms for the Offline BLOCKMATCH Problem
	A Greedy Algorithm for the Offline BLOCKMATCH Problem

	BLOCKMATCH with Bandit Feedback
	Conclusions and Future Work
	Proofs for Section 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Description of DRRSD and Proof of Theorem 5
	Proof of Theorem 4
	Proof of Theorem 5

	Proofs for Section 4
	Proof of Theorem 6

	Computational complexity of BLOCKMATCH
	Updates and Corrections

