
META-LEARNING WITH GRAPH NEURAL NETWORKS:
METHODS AND APPLICATIONS

Debmalya Mandal
Data Science Institute

Columbia University, New York
dm3557@columbia.edu

Sourav Medya
Kellogg School of Management
Northwestern University, Illinois
sourav.medya@gmail.com

Brian Uzzi
Kellogg School of Management
Northwestern University, Illinois

uzzi@kellogg.northwestern.edu

Charu Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, New York
charu@us.ibm.com

February 27, 2021

ABSTRACT

Graph Neural Networks (GNNs), a generalization of deep neural networks on graph data have been
widely used in various domains, ranging from drug discovery to recommender systems. However,
GNNs on such applications are limited when there are few available samples. Meta-learning has
been an important framework to address the lack of samples in machine learning, and in recent
years, the researchers have started to apply meta-learning to GNNs. In this work, we provide a com-
prehensive survey of different meta-learning approaches involving GNNs on various graph problems
showing the power of using these two approaches together. We categorize the literature based on
proposed architectures, shared representations, and applications. Finally, we discuss several exciting
future research directions and open problems.

1 Introduction

The methods of artificial intelligence (AI) and machine learning have found tremendous success in various applica-
tions, ranging from natural language processing [Dev+19] to cancer screening [Wu+19]. The success of AI systems
can be attributed to various architectural innovations, and the ability of deep neural networks (DNN) to extract mean-
ingful representations from Euclidean data (e.g. image, video etc.). However, in many applications, the data is graph-
structured. For example, in drug discovery, the goal is to predict whether a given molecule is a potential candidate for
a new drug, where the input molecules are represented by graphs. In a recommender system, the interaction between
the users and the items are represented by a graph, and such non-Euclidean data is crucial in designing a better system.

The proliferation of graph structured data in various applications has led to a Graph Neural Network (GNN), a gen-
eralization of DNN for graph-structured inputs. The main goal of GNNs is to learn effective representations of the
graphs. Such representations map the vertices, edges, and/or graphs to a low-dimensional space (e.g. Rd), so that the
structural relationships in the graph are reflected by the geometric relationships in the representations [HYL17b]. In
recent years, GNNs have been applied in diverse domains, often with surprising positive results like discovery of a
new antibiotic [Sto+20], accurate traffic forecasting [Cui+19] etc.

Despite of recent success of GNNs in various domains, GNN frameworks have their own shortcomings. One of the
major challenges in applying GNNs, particularly for large graph-structured datasets, is the limited number of samples.
Furthermore, real-world systems like recommender systems often need to handle a diverse type of problems, and must
adapt to a new problem with very few observations. In recent years, meta-learning has turned out be an important
framework to address these shortcomings of deep learning systems. The main idea behind meta-learning is to design
learning algorithms that can leverage prior learning experience to adapt to a new problem quickly, and learn a useful
algorithm with few samples. Such approaches have been quite successful in diverse applications like natural language
processing [Liu+19], robotics [Nag+20], and healthcare [Zha+19].



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

Recently, several meta learning methods to train GNNs have been proposed for various applications. The main chal-
lenge in applying meta-learning to graph-structured data is to determine the type of representation that is shared across
tasks, and devise an effective training strategy. In this survey, we review the growing literature on meta learning with
GNNs. There are several thorough individual surveys on GNN [Zho+18; Wu+20] and meta-learning [Hos+20], but
we believe this survey is the first effort to categorize and comprehensively review the existing papers on meta learning
with GNNs.

Our Contribution Besides providing background on meta-learning and GNN architectures individually, our contri-
butions can be summarized as follows.

• Comprehensive review: We provide a comprehensive review of meta learning techniques with GNNs on
several graph problems. We categorize the literature based on methods, representations and applications and
show various scenarios where limitations of GNNs are addressed via meta learning.

• Future directions: We discuss how meta learning and GNNs can address some of the challenges in several
areas: (i) combinatorial graph problems, (ii) graph mining problems, and (iii) other emerging applications
such as traffic flow prediction and network alignment.

The rest of this paper is organized as follows. Section 2 provides background on key graph neural network frameworks.
Section 3 also outlines the background on meta-learning and key theoretical advances. Besides an overview in Section
4, a comprehensive categorization of the papers that use the framework of meta-learning equipped with GNNs on
important graph related problems is described in Sections 5 and 6. Section 7 suggests some exciting future directions.

2 Background on GNN

Generalizing deep learning on graphs has given birth to an exciting area of Graph Neural networks (GNNs). Here
we briefly describe the key GNN architectures. A primary contribution in applying neural architectures on graphs has
been made by [KW17] with the introduction of Graph Convolutional Networks (GCNs). GCNs are analogous version
of convolutional neural networks (CNNs) on graphs. Inspired by the idea of representing a pixel with information from
its nearby pixels (filter in CNNs), graph convolutions also apply the key idea of aggregating feature information from
a node’s local neighborhood. More formally, GCNs are neural network architectures that produces a d-dimensional
embeddings for each node by taking as input adjacency matrix A and features and node features X; GCN(A,X) :
Rn×n×Rn×p → Rn×d. The idea is to aggregate feature information from a node’s neighborhood (can be generalized
to multiple hops) and its own features to produce the final embedding. A 2-layer (neighbourhood is 2-hops) GCN can
is defined as follows:

GCN(A,X) = σ(Âσ(ÂXW (1))W (2))

where Â =D̃−
1
2 ÃD̃−

1
2 is the normalized adjacency matrix with D̃ as weighted degree matrix and Ã=In+A with In

being an n× n identity matrix and σ is an activation function. Moreover, W (i) is a weight matrix for the i-th layer to
be learned during training, with W (1) ∈ Rp×d′ , W (2) ∈ Rd′×d, and d (d′) being the number of neural network nodes
in the output (hidden) layer.

Hamilton et al. [HYL17a] proposed an inductive GNN framework with an aggregation function that is able to share
weight parameters (Wk) across nodes, can be generalized to unseen nodes and scale to large datasets. To learn
representation hkv of a node v, it iterates over all nodes which are in their K-hop neighborhood. While iterating over
node v, it aggregates (with AGGREGATEk) the current representations of v’s neighbors (hkN (v)) and concatenate
with the current representation of v (hk−1v ), which is then fed through a fully connected layer with an activation
function. Intuitively, with more iterations, nodes incrementally receive information from neighbors of higher depth
(i.e., distance). More specifically for k-th iteration,

hkN (v) = AGGREGATEk
({
hk−1u ,∀u ∈ N(v)

})
hkv = σ

(
Wk · CONCAT

(
hkN (v), hk−1v

))
There are several variations of GNNs that are based on different mechanisms: Graph Attention Networks (GATs)
[Vel+18; Zha+18] learn edge weights using attention mechanisms; Graph Autoencoders [CLX16; KW16] encode
nodes/graphs into a latent vector space and further reconstruct the graph related data depending on the application
from this encoding in an unsupervised fashion; Recurrent GNNs [Sca+08; Li+16] apply the same set of parameters
recurrently over nodes to extract high-level node representations. For a comprehensive survey on GNNs, please refer
to [Wu+20].

2



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

Applications. GNNs outperform traditional approaches for semi-supervised learning tasks (e.g. node classification)
on graphs. The high level applications of GNNs can be categorized in three major tasks: node classification, link
prediction, and graph classification. For node classification and link prediction traditionally four benchmark datasets
are used: Cora, Citeseer, Pubmed, and PPI. Shchur et al. [Shc+18] and Errica et al. [Err+19] provide a detailed
comparison of performances of the main GNN architectures on node and graph classification respectively. GNNs
are also used in link prediction task that has applications in many domains such as friend or movie recommendation,
knowledge graph completion, and metabolic network reconstruction [ZC18].

3 Background on Meta-Learning

Meta-learning has turned out to be an important strategy the problem of limited data in various machine learning
applications. The main idea behind meta-learning is to design learning algorithms that can leverage prior learning
experience to adapt to a new problem quickly, and learn a useful algorithm with few samples [Sch87].

Framework. In standard supervised learning, we are given a training dataset D = {xi, yi}ni=1, a loss function `,
and we aim to find a predictive model of the form ŷ = fθ(x).

θ∗ = argminθL(D, θ) = argminθ

n∑
i=1

`(fθ(xi), yi)

In meta-learning, we are given samples from a number of different tasks and the goal is to learn an algorithm that
generalizes across tasks. In particular, the tasks are drawn from a distribution p(T ), and the meta-objective is to find
a common parameter that works across the distribution of tasks.

ω∗ = argminω
∑

Ti∼p(T )
Di∼Ti

Li(Di, ω) (1)

In the meta-test phase, we are given a target task (say task 0) and we use the meta-knowledge ω∗ to obtain the best
parameter for the target with few samples.

θ∗0 = argminθL0(D0, θ|ω∗)

Training. Many popular meta-learning algorithms are based on gradient descent on the meta-parameter ω [FAL17;
RL17]. In order to understand how to perform gradient descent with respect to ω, it is insightful to frame Eq. 1 as a
bi-level optimization problem.

ω∗ = argminω
∑

Ti∼p(T )
Di∼Ti

L(Di, θ∗i (ω), ω)

s.t. θ∗i (ω) = argminθLi(θ, ω,Di) ∀i
If we have a model for the inner-optimization method, then a gradient of the objective with respect to ω can be
computed by using the chain rule e.g. ∇ωL(Di, θ∗i (ω), ω) = ∇θ∗i (ω)L(Di, θ

∗
i (ω), ω)

dθ∗i (ω)
dω . However, often the

inner objective function is non-convex, and hard to solve. So model agnostic meta learning (MAML), introduced by
[FAL17] suggests first taking a gradient step for each task i (θ′i = θ − α∇θLi(θi, ω,Di) and then replacing θ∗i (ω) in
the outer objective i.e. ω = ω − β∇ω

∑
i L(Di, θ′i, ω).

Theory. Despite immense success, we are yet to fully understand the theoretical foundations of meta-learning al-
gorithms. Baxter [Bax00] first proved generalization bound for multitask learning problem, by considering a model
where tasks with shared representation are sampled from a generative model. Pontil et al. [PM13], and Maurer et
al. [MPRP16] developed general uniform-convergence based framework to analyze multitask representation learning.
However, they assume oracle access to a global empirical risk minimizer. The most promising theoretical direction
stems from representation learning. The main idea is that the tasks share a common shared representation and a
task-specific representation [TJJ20b; TJJ20a]. If the shared representation is learned from the training tasks, then the
task-specific representation for the new task can be learned with only a few samples.

4 Overview

We review the literature on meta learning with graph neural networks in two sections. First, section 5 covers appli-
cations of meta-learning framework for solving some classical graph problems. Here, the problem doesn’t explicitly

3



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

come with a multi-task settings, rather the meta-learning framework is applied to a fixed graph. Then, in section 6
we cover the literature on graph meta learning when there are multiple tasks and the graph might change with the
tasks. Although various GNNs have been proposed for graph meta-learning, they can be categorized broadly based
on the type of shared representation, which can be either at a local level (node/edge based) or at the global level
(graph based). Table 1 provides an overview of various papers categorized by the type of shared representation and
application considered.

Graph applications

Representation Node classification Link Prediction Graph Classification

Node/Edge Level [Zho+19] [Che+19]
[Din+20] [BLH20]
[Liu+21]

[Wan+20]
[BV20] [BV20] [BV20]

Graph Level [Bos+19] [CNK20]
[Ma+20]

Table 1: Organization of the papers on Meta-learning and GNN based on applications and underlying graph-related
representations.

5 Meta-Learning Applied to Graph Problems

In this section, we review applications of meta-learning for solving some classical problems on graphs. Here we
consider the setting when the underlying graph is fixed and the node/edge features do not change with different tasks.
In fact, we are not in a multitask framework where there are a number of tasks and few samples are available from
each task. Rather, the framework of meta-learning is applied to various graph problems by creating multiple tasks
either considering the nodes or the edges.

Node Embedding. The goal of node embedding is to learn representations for the nodes in the graph so that any
downstream application can directly work with these representations, without considering the original graph. This
problem is often challenging in practice because the degree distributions of most graphs follow a power law distribution
and there are many nodes with very few connections. Liu et al. [Liu+20] address this issue by applying meta-learning
to the problem of node embedding of graphs. They set up a regression problem with a common prior to learn the
node embeddings. Since the base representations of high-degree nodes are accurate, they are used as meta training set
to learn the common prior. The low degree nodes have only a few neighbors (samples), the regression problem for
learning their representations is formulated as a meta-testing problem, and the common prior is adapted with a small
number of samples for learning the embeddings of such nodes.

Node Classification. The node classification task aims to infer the missing labels of nodes of a given partially labeled
graph. This problem often appears in diverse contexts such as document categorization and protein classification
[Tan+08; Bor+05], and have received significant attention in recent years. However, often many classes are novel
i.e., they have very few labeled nodes. This makes meta-learning or few-shot learning particularly suitable for this
problem. Zhou et al. [Zho+19] apply a meta-learning framework for the node classification problem on graphs by
learning a transferable representation using data from classes that have many labeled examples. Then, during the
meta-test phase, this shared representation is used to make predictions for novel classes with few labeled samples.
Ding et al. [Din+20] improve upon the previous method by considering a prototype representation of each class and
meta-learning the prototype representation as an average of weighted representations of each class. Subsequently, Liu
et al. [Liu+21] point out that it is important to also learn the dependencies among the nodes in a task, and propose
to use nodes with high centrality scores (or hub nodes) to update the representations learned by a GNN. This is done
by selecting a small set of hub nodes and for each node v, considering all the paths to the node v from the set of hub
nodes.

Link Prediction. Meta-learning is useful for learning new relationship via edges/links in multi-relational graphs. In
multi-relational graphs, an edge is represented by a triple of two end points and a relation. Such graphs appear in many
important domains such as drug-drug interaction prediction. The goal of link prediction in multi-relation graphs is to
predict new triples given one end point of a relation r with observing a few triples about r. This problem is challenging

4



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

Meta-learning parameters

Papers Inner Loop Outer Loop
(Task-Specific) (Shared)

[HZ20] Node embeddings Classification
[Wan+20] Node embeddings Feature matrix
[CNK20] Graph feature, graph label/

Super-class actual class
[Ma+20] Graph feature, graph embedding/

Graph embedding Classification
[BV20] Node Embedding Output Layer

[Bos+19] VGAE Initialization Graph Signature
(GCN + MLP)

[Liu+20] High-degree node specific
node embedding embedding

Table 2: Organization of the papers in Section 6 based on the corresponding meta-learning approaches.

as only few associative triples are usually available. Chen et al. [Che+19] use meta-learning to solve link prediction in
two steps: (1) A Relation-Meta Learner generates relation meta from heads’ and tails’ embeddings in the support set,
and (2) An Embedding Learner that calculates the truth values of triples in support set via end points’ embeddings and
relation meta.

Multi-relational graphs are even more difficult to manage with their dynamic nature (addition of new nodes) over
time and the learning is even more difficult when these newly evolved nodes have only few links among them. Baek
et al. [BLH20] introduce a few-shot out-of-graph link prediction technique, where they predict the links between the
seen and unseen nodes as well as between the unseen nodes. The main idea is to randomly split the entities in a given
graph into the meta-training set for simulated unseen entities, and the meta-test set for real unseen entities.

6 Meta-Learning on GNN

We now discuss the growing and exciting literature on graph meta learning where there are multiple tasks and the
graph changes across the tasks. Changes in graphs occur if either the node/edge feature changes, or the underlying
network structure changes with the tasks. In the context of meta-learning, several architectures have been proposed
in recent years. However, a common thread underlying all of them is a shared representation of the graph, either at a
local node/edge level, or at a global graph level. Based on the type of shared representation, we categorize the existing
works into two groups. Most of the existing literature adopt the MAML algorithm [FAL17] to train the GNNs. The
outer loop of MAML updates the shared parameter, whereas the inner loop updates the task-specific parameter for the
current task. Table 2 lists the shared and the task-specific parameters for all the papers in this section.

6.1 Node/Edge Level Shared Representation

First, we consider the setting where the shared representation is local i.e. node/edge based. Huang et al. [HZ20]
consider the node classification problem where the input graphs as well as the labels can be different across tasks.
They learn a representation for each node u in two steps. First, extract a subgraph Su corresponding to the set of nodes
{v : d(u, v) ≤ h} where d(u, v) is the distance of the shortest path between nodes u and v. Then feed the subgraph
Su through a GCN to learn a representation for node u. The theoretical motivation behind considering the graph Su is
that the influence of a node v on u decreases exponentially as the shortest-path distance between them increases. Once
the nodes are encoded, one can learn any function fθ that maps the encodings to class labels. Huang et al. [HZ20]
use MAML to learn this function with very few samples on a new task, enjoying the benefits of node-level shared
representations in node classification.

Wang et al. [Wan+20] also consider the few shot node classification problem for a setting where the network structure
is fixed, but the features of the nodes change with tasks. In particular, given a base graph with node feature matrix
X ∈ Rn×d, the proposed model learns a new feature matrix Xt = X � αt(φ) + βt(φ) for the t-th task, and then
use a GNN fθ(Xt) to learn the node representations for the t-th task. During training, the outer loop updates the φ
parameters, whereas the inner loop of MAML only updates the θ-parameter. This enables quick adaptation to the new
task.

5



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

Meta-Training Graphs

Meta-Testing Graphs

Query

Query

Support

Outer Loop Updates

MLP

Embedding 
Layer 1

Inner Loop Adaptation

Fixed

Node
Class

Prediction

Support Subgraph 
Extraction

Embedding 
Layer 2

MLP

Embedding 
Layer 1

Subgraph 
Extraction

Embedding 
Layer 2

Node
Class

Prediction

Figure 1: A prototype of the meta learning frame-
work with GNN for solving node classification prob-
lem. This is based on the architectures proposed by
[HZ20] and [Wan+20]. Following [HZ20], we pro-
pose to use the neighborhoods of each node for node
embedding. Embedding layer 1 is trained in the outer
loop of MAML, whereas the other layers are adapted
for particular tasks.

Meta-Training Graphs

Meta-Testing Graphs

Support

Query

Query

Support

Outer Loop Updates

MLP
Pooling

Embedding 
Layers

Inner Loop Adaptation

Fixed

Output 
Class

Output 
Class

Figure 2: A prototype of the meta learning frame-
work with GNN for solving graph classification prob-
lem. This is based on the architectures proposed by
[Ma+20], and [BV20]. The embedding and pooling
layers learn global representation of the input graph,
and are trained in the outer loop of MAML. The final
multi-layer perceptron (MLP) is used for classification
and is adapted to the particular task at meta-test.

6.2 Graph Level Shared Representation

In this subsection, we discuss the setting when the shared representation is global i.e. graph-level. A canonical
application of this representation is the graph classification problem, where the goal is to classify a given graph
to one of many possible classes. Graph classification often requires a large number of samples for high quality
prediction. Thus, learning with few labeled graph data is challenging for practical applications and can be addressed
by meta-learning. The existing papers on using meta-learning for graph classification usually learn an underlying
shared representation and then adapts the representation for a new task.

Chauhan et al. [CNK20] proposed few-shot graph classification based on graph spectral measures. In particular, they
train a feature-extractor Fθ(·) to extract features from the graphs in meta-training. For classification, they use two units
Csup to predict the super-class probability of a graph, and Catt, an attention network to predict the actual class label.
During the meta-test phase, the weights of the networks Fθ(·) and Csup are fixed, and the network Catt is retrained on
the new test classes. As the feature extractor Fθ is the common shared structure, and is not retrained on the test tasks,
this approach requires few samples from new classes.

Although Chauhan et al. [CNK20] propose a novel meta-learning architecture for graph classification, there are several
limitations. First, the architecture assumes significant overlap between the super-class structure of the test and the
training set. Second, the fixed feature extractor cannot be updated for the new tasks. Ma et al. [Ma+20] design a better
meta-learning technique by allowing the feature extractor to adapt efficiently for new tasks. They apply two networks
– embedding layers (θe), followed by classification layers (θc) to classify a given graph. However, for a new task, both
θe and θc are updated. In particular, the authors use MAML [FAL17] to update the parameters and use a reinforcement
learning based controller to determine how the inner loop is run i.e., what is the optimal adaptation step for a new task.
The parameters of the controller is updated using the graph’s embedding quality and the meta-learner’s training state.

Finally, Buffelli et al. [BV20] attempt to develop a framework that can adapt to three different tasks – graph classifica-
tion, node classification, and link prediction. Like [CNK20; Ma+20] they use two different layers; one generates node
embeddings and convert the graph to a representation, and another was a multi-head output layer for the three types of
tasks. The node embedding layer is trained during the initialization phase of MAML and the multi-head output layer
is updated in the inner loop of MAML based on the type of task.

Bose et al. [Bos+19] consider the few shot link prediction problem, where the goal is to predict labels of links/edges
that contain only a small fraction of their true labels. They assume that the graphs are generated from a common
distribution p(·) and learn a meta link prediction model that can be quickly adapted to a new graph G ∼ p(·). In
particular, the authors use Variational Graph Autoencoder (VGAE) [KW16] to model the base link prediction model.
There are two sets of parameters – global initialization parameters for the VGAE, and local graph signature sG = ψ(G)

6



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

which is obtained by passing the graph G through GCN and then using a k-layer MLP. The training is done using
MAML and only the graph signature is updated for the test graph.

7 Future Directions

The application of meta-learning to GNNs for graph specific applications is a growing but exciting area of research.
In this section, we suggest several future directions for research.

7.1 Emerging Applications

We have discussed applications of meta-learning equipped with GNNs on node/graph classification and link prediction.
In fact, this framework is quite general, and one can consider other relevant problems.

Traffic Prediction: Recently, the traffic prediction problem [Pan+20] has been addressed via meta-learning. In traffic
prediction, the main challenges are modeling complex spatio-temporal correlations of traffic and capturing the diversity
of such correlations varying locations. An important question is the following: how do we apply meta-learning to learn
these correlations and use these meta knowledge to have high quality predictions in diverse locations?

Network Alignment (NA): Another potential problem where meta-learning could be helpful is network alignment.
NA aims to map or link entities from different networks and relevant in many application domains such as cross-
domain recommendation and advertising. Zhou et al. [Zho+20] address this alignment problem via meta-learning.
The idea is to use the meta-metric learning from known anchor nodes to obtain latent priors for linking unknown
anchor nodes. The existing approaches of NA is also difficult to scale. An interesting direction of research would
consider meta-learning to overcome this scalability challenge.

Molecular Property Prediction: GNNs have been also used in predicting molecular properties. However, one of
the main challenges is that molecules are heterogeneous structure where each atom has connection with different
neighboring atoms via different types of bonds. Secondly, often a limited amount of data on labeled molecular property
are available; and thus, to predict new molecular properties, meta-learning techniques [Guo+21] can be relevant and
effective.

7.2 Graph Combinatorial Optimization Problems

Combinatorial optimization problems appearing in graphs have applications in many domains such as viral marketing
in social networks [KKT03], health-care [Wil+18], and infrastructure development [Med+18], and several GNN based
architectures have been proposed for solving them [Dai+17; LCK18; Gas+19; Man+20]. These optimization problems
are often NP-hard, and polynomial-time algorithms, with or without approximation guarantees, are often desirable and
used in practice. However, some techniques [LCK18; Man+20] based on GNNs need to generate candidate solution
nodes/edges before generating the actual solution set. Note that, labels in the form of importance of each node in a
solution set of these problems are often difficult to get. Meta-learning can be used when there are scarcity of labels.
Furthermore, these combinatorial problems often share similar structures. For instance, the influence maximization
problem [KKT03] have similarity with the Max Cover problem. However, even performing a greedy iterative algo-
rithm to generate solutions/labels for influence maximization problem is computationally expensive. The idea of using
meta-learning in solving a harder combinatorial problem (unseen task) with a fewer node labels will be to learn on
the easier problems (seen tasks) where labels can be generated at a lower cost. Solving combinatorial optimization
problems on graphs via neural approaches has recently gained a lot of attention and we refer the readers to [Cap+21]
for further reading.

7.3 Graph Mining Problems

There has been recent attempt to solve classical graph mining problems with GNN frameworks. For instance, a
popular problem is to find graph edit distance (similarity) between two graphs [Bai+19]. When the notion of similarity
changes and there are not enough data to learn via a standard supervised learning method, can meta-learning be
helpful? Another popular graph mining problem is detecting the Maximum Common Subgraph (MCS) between two
input graphs with applications in biomedical analysis and malware detection. In drug design, common substructures
in compounds can reduce the number of human-conducted experiments. However, MCS computation is NP-hard,
and state-of-the-art exact MCS solvers are not scalable to large graphs. Designing learning based models [Bai+20]
for the MCS problem while utilizing as few labeled MCS instances as possible remains to be a challenging task and
meta-learning could be helpful in mitigating this challenge.

7



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

7.4 Dynamic Graphs

In many applications, graphs arise with their dynamic nature, i.e., nodes and edges along with their attributes can
change (addition or deletion) over time. Most of the discussed papers that use frameworks built on meta-learning
and GNNs focus on static graphs. An interesting direction would be to extend this framework for dynamic graphs
[BLH20].

7.5 Theory

We pose two important theoretical questions in the context of meta learning with GNNs. The most natural question
is understanding the benefits of transfer learning in GNNs. Garg et al. [GJJ20] and Scarselli et al. [STH18] have
recently established generalization bounds for GNNs. On the other hand, in the context of meta-learning, Tripuraneni
et al. [TJJ20b] considers functions of the form fj · h, where fj ∈ F is the task-specific function and h is the shared
function. Then the number of samples required in the meta-test phase grows asC(F), which can be significantly lower
than learning fj · h from scratch. It would be interesting to see if one can prove similar speedup results for GNNs by
generalizing the results of [GJJ20] and [STH18]. Another interesting question is determining the right level of shared
representation and figuring out the expressiveness of such structures. The seminal work of Xu et al. [Xu+18] proves
that GNN variants like GCN and GraphSAGE are no more discriminative than the Weisfeiler-Leman (WL) test. Since
GNNs for meta-learning further limit the type of architecture used, an interesting question is whether it comes with
any additional cost on expressiveness.

8 Conclusion

In this survey, we have performed a comprehensive review of the works that are combination of graph neural networks
(GNNs) and meta-learning. Besides outlining backgrounds on GNNs and meta-learning, we have organized the past
research in an organized manner in multiple categories. We have also provided a thorough review, summary of meth-
ods, and applications in these categories. Furthermore, we have described several future research directions where
meta learning with GNN can be useful. The application of meta-learning to GNNs is a growing and exciting field and
we believe many graph problems will benefit immensely from the combination of the two approaches.

References

[Bai+19] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. “SimGNN: A Neural
Network Approach to Fast Graph Similarity Computation”. In: WSDM. 2019.

[Bai+20] Yunsheng Bai, Derek Xu, Alex Wang, Ken Gu, Xueqing Wu, Agustin Marinovic, Christopher Ro, Yizhou
Sun, and Wei Wang. “Fast detection of maximum common subgraph via deep q-learning”. In: arXiv
preprint arXiv:2002.03129 (2020).

[Bax00] Jonathan Baxter. “A model of inductive bias learning”. In: JAIR 12 (2000), pp. 149–198.
[BLH20] Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. “Learning to extrapolate knowledge: Transductive

few-shot out-of-graph link prediction”. In: NeurIPS (2020).
[Bor+05] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and

Hans-Peter Kriegel. “Protein function prediction via graph kernels”. In: Bioinformatics 21 (2005),
pp. i47–i56.

[Bos+19] Avishek Joey Bose, Ankit Jain, Piero Molino, and William L Hamilton. “Meta-graph: Few shot link
prediction via meta learning”. In: arXiv preprint arXiv:1912.09867 (2019).

[BV20] Davide Buffelli and Fabio Vandin. “A Meta-Learning Approach for Graph Representation Learning in
Multi-Task Settings”. In: arXiv preprint arXiv:2012.06755 (2020).

[Cap+21] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. “Combinatorial optimization and reasoning with graph neural networks”. In: arXiv preprint
arXiv:2102.09544 (2021).

[Che+19] Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. “Meta Relational Learning for
Few-Shot Link Prediction in Knowledge Graphs”. In: EMNLP-IJCNLP. 2019, pp. 4208–4217.

[CLX16] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep neural networks for learning graph representations”.
In: AAAI 30.1 (2016).

[CNK20] Jatin Chauhan, Deepak Nathani, and Manohar Kaul. “Few-Shot Learning on Graphs via Super-Classes
based on Graph Spectral Measures”. In: ICLR (2020).

8



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

[Cui+19] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. “Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic learning and forecasting”. In: IEEE
TITS (2019), pp. 4883–4894.

[Dai+17] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. “Learning combinatorial opti-
mization algorithms over graphs”. In: NeurIPS (2017).

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding”. In: NAACL-HLT (2019).

[Din+20] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. “Graph prototypical
networks for few-shot learning on attributed networks”. In: CIKM. 2020, pp. 295–304.

[Err+19] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. “A fair comparison of graph neural
networks for graph classification”. In: arXiv preprint arXiv:1912.09893 (2019).

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adaptation of
deep networks”. In: ICML. 2017, pp. 1126–1135.

[Gas+19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. “Exact combinatorial
optimization with graph convolutional neural networks”. In: NeurIPS (2019).

[GJJ20] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. “Generalization and representational limits of graph
neural networks”. In: ICML. PMLR. 2020, pp. 3419–3430.

[Guo+21] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
“Few-Shot Graph Learning for Molecular Property Prediction”. In: The Web Conference (2021).

[Hos+20] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. “Meta-learning in neural
networks: A survey”. In: arXiv preprint arXiv:2004.05439 (2020).

[HYL17a] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”. In:
NeurIPS. 2017, pp. 1024–1034.

[HYL17b] William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on graphs: Methods and
applications”. In: arXiv preprint arXiv:1709.05584 (2017).

[HZ20] Kexin Huang and Marinka Zitnik. “Graph meta learning via local subgraphs”. In: NeurIPS (2020).
[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread of influence through a social

network”. In: KDD. 2003.
[KW16] Thomas N Kipf and Max Welling. “Variational graph auto-encoders”. In: arXiv preprint

arXiv:1611.07308 (2016).
[KW17] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks”.

In: ICLR (2017).
[LCK18] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. “Combinatorial optimization with graph convolutional

networks and guided tree search”. In: NeurIPS (2018).
[Li+16] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. “Gated graph sequence neural net-

works”. In: ICLR (2016).
[Liu+19] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. “Multi-Task Deep Neural Networks for

Natural Language Understanding”. In: ACL. 2019.
[Liu+20] Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. “Towards locality-aware

meta-learning of tail node embeddings on networks”. In: CIKM. 2020, pp. 975–984.
[Liu+21] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. “Relative and Absolute Location Embedding

for Few-Shot Node Classification on Graph”. In: AAAI (2021).
[Ma+20] Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, and Zhi Yu. “Few-Shot Graph Classifica-

tion with Model Agnostic Meta-Learning”. In: arXiv preprint arXiv:2003.08246 (2020).
[Man+20] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh.

“GCOMB: Learning Budget-constrained Combinatorial Algorithms over Billion-sized Graphs”. In:
NeurIPS (2020).

[Med+18] Sourav Medya, Jithin Vachery, Sayan Ranu, and Ambuj Singh. “Noticeable network delay minimization
via node upgrades”. In: VLDB (2018).

[MPRP16] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. “The benefit of multitask repre-
sentation learning”. In: Journal of Machine Learning Research 17.81 (2016), pp. 1–32.

[Nag+20] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. “Deep dynamics models for learn-
ing dexterous manipulation”. In: CoRL. 2020.

[Pan+20] Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang, and Yu Zheng. “Spatio-
Temporal Meta Learning for Urban Traffic Prediction”. In: TKDE (2020).

9



Meta-Learning with Graph Neural Networks: Methods and Applications A PREPRINT

[PM13] Massimiliano Pontil and Andreas Maurer. “Excess risk bounds for multitask learning with trace norm
regularization”. In: COLT. 2013, pp. 55–76.

[RL17] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot learning”. In: ICLR. 2017.
[Sca+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. “The

graph neural network model”. In: IEEE transactions on neural networks 20.1 (2008), pp. 61–80.
[Sch87] Jürgen Schmidhuber. “Evolutionary principles in self-referential learning, or on learning how to learn:

the meta-meta-... hook”. PhD thesis. Technische Universität München, 1987.
[Shc+18] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. “Pitfalls of

graph neural network evaluation”. In: arXiv preprint arXiv:1811.05868 (2018).
[STH18] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. “The Vapnik–Chervonenkis dimension of

graph and recursive neural networks”. In: Neural Networks 108 (2018), pp. 248–259.
[Sto+20] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, et al. “A deep

learning approach to antibiotic discovery”. In: Cell (2020), pp. 688–702.
[Tan+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. “Arnetminer: extraction and mining

of academic social networks”. In: KDD. 2008.
[TJJ20a] Nilesh Tripuraneni, Chi Jin, and Michael I Jordan. “Provable meta-learning of linear representations”.

In: arXiv preprint arXiv:2002.11684 (2020).
[TJJ20b] Nilesh Tripuraneni, Michael Jordan, and Chi Jin. “On the Theory of Transfer Learning: The Importance

of Task Diversity”. In: NeurIPS 33 (2020).
[Vel+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.

“Graph attention networks”. In: ICLR (2018).
[Wan+20] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua Zheng. “Graph Few-

shot Learning with Attribute Matching”. In: CIKM. 2020, pp. 1545–1554.
[Wil+18] Bryan Wilder, Han Ching Ou, Kayla de la Haye, and Milind Tambe. “Optimizing Network Structure for

Preventative Health”. In: AAMAS. 2018.
[Wu+19] Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, et al. “Deep neural networks improve radiologists’ per-

formance in breast cancer screening”. In: IEEE transactions on medical imaging 39.4 (2019), pp. 1184–
1194.

[Wu+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. “A com-
prehensive survey on graph neural networks”. In: IEEE transactions on neural networks and learning
systems (2020).

[Xu+18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are graph neural net-
works?” In: ICLR (2018).

[ZC18] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”. In: NeurIPS (2018).
[Zha+18] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. “Gaan: Gated attention

networks for learning on large and spatiotemporal graphs”. In: UAI (2018).
[Zha+19] Xi Sheryl Zhang, Fengyi Tang, Hiroko H Dodge, Jiayu Zhou, and Fei Wang. “Metapred: Meta-learning

for clinical risk prediction with limited patient electronic health records”. In: KDD. 2019.
[Zho+18] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and

Maosong Sun. “Graph neural networks: A review of methods and applications”. In: arXiv preprint
arXiv:1812.08434 (2018).

[Zho+19] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. “Meta-Gnn: On
Few-Shot Node Classification in Graph Meta-Learning”. In: CIKM. 2019, pp. 2357–2360.

[Zho+20] Fan Zhou, Chengtai Cao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Ji Geng. “Fast network
alignment via graph meta-learning”. In: INFOCOM. 2020, pp. 686–695.

10


	Introduction
	Background on GNN
	Background on Meta-Learning
	Overview
	Meta-Learning Applied to Graph Problems
	Meta-Learning on GNN
	Node/Edge Level Shared Representation
	Graph Level Shared Representation

	Future Directions
	Emerging Applications
	Graph Combinatorial Optimization Problems
	Graph Mining Problems
	Dynamic Graphs
	Theory

	Conclusion

